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A causality postulate is considered which is based on the conception of systems 
that arc prepared in some finite region of space-time and recorded in some other 
region. If these regions arc spacelike separated, the recording apparatus should 
react as if no preparing apparatus were present, i.e., it should respond with at 
most some vacuum rate. The causality postulate is mathematically formulated 
within the framework of statistical theories. The connections with algebraic field 
theory arc discussed and the relation between causality and spectral conditions is 
studied. General methods for constructing systems satisfying the causality pos- 
tulate arc given and applied in several examples. 

1. I N T R O D U C T I O N  

E ins t e in ' s  p r inc ip le  of causa l i ty  states that  par ts  of an  e x p e r i m e n t  
p e r f o r m e d  in spacel ike  separa ted  regions  of  space - t ime  c a n n o t  in f luence  

each other.  Therefore ,  to app ly  it to an y  pa r t i cu l a r  phys ica l  theory  one  has 
to specify the way  the par t s  of an  expe r imen t ,  their  loca t ion  in  space- t ime,  

a n d  the poss ib le  i n t e r ac t i ons  b e t ween  them are  to be represen ted .  
In  this pape r  we shall  cons ide r  a causa l i ty  pos tu la te  which  is based  on  

the c o n c e p t i o n  of sys tems that  are p r epa red  in some  f ini te  region  of 
space- t ime  a n d  recorded  in some  o the r  region.  If these regions  are spacel ike  
separa ted ,  the r eco rd ing  a p p a r a t u s  shou ld  react  as if no  p r e p a r i n g  a p p a r a t u s  
were present ,  i.e., it shou ld  r e s p o n d  with at mos t  some  v a c u u m  rate. 
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The preparing and recording devices are assumed to be given by their 
macroscopic descriptions as in a laboratory manual. "Microsystems" or 
structures characteristic of microscopic physics enter into the formulation of 
our postulate only as the carriers of a specific kind of interaction between 
macroscopic systems such that our postulate is a natural extension of the 
causality principles of macroscopic physics. 

The Einstein principle of causality can also be applied to a pair of 
measuring devices. If these are spacelike separated and thus do not in- 
fluence each other they may be combined into a correlation experiment 
which reproduces the statistics of the original devices as marginal distribu- 
tions. Our formalization of this principle (called local coexistence) gener- 
alizes the local commutativity of algebraic quantum field theory (Haag and 
Kastler, 1964). 

The conceptual independence of our coexistence and causality princi- 
ples is clear from the observation that coexistence in contrast to causality 
becomes trivial in the classical case. The type of influence local coexistence 
or commutativity exclude is not based on the actual propagation of the 
systems the theory describes: A violation of one of these principles would 
not imply directly that it is possible to transmit signals faster than light. 

In Section 2 we shall formulate our postulates in the framework of 
statistical theories in the sense of Ludwig (1977). In Section 3 we discuss in 
some detail the connections of this framework and our postulates with the 
algebraic approach to quantum field theory. 

Section 4 deals with the relation between causality' and spectral condi- 
tions. One consequence (nonexistence of counters) is analogous to a well- 
known corollary of the Reeh-Schlieder theorem (Reeh and Schlieder, 1961) 
but is derived here from rather different physical assumptions. 

Section 5 summarizes basic constructions for systems satisfying Axiom 
C. It includes necessary and sufficient conditions for a net of local algebras 
to fit into this framework. 

Section 6 gives some examples that are straightforward applications of 
the methods developed in Section 5. 

2. AXIOMS 

We begin with a short review of Ludwig's framework for statistical 
theories. It was devised originally as a starting point for axiomatic quantum 
mechanics (Ludwig, 1970, 1977, 1981). 

Every individual experiment may be split into a preparation and a 
registration. (The splitting need not be unique.) Both parts are to be 
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described in terms of macroscopic physics. For our purposes it is sufficient 
to consider only registration procedures with two possible outcomes de- 
noted + and - .  The basic quantities of the theory are the relative 
frequencies of the outcome " + "  in a long series of experiments performed 
according to the same pair of procedures. Different preparing procedures 
may lead to the same frequencies for all registrations. An equivalence class 
under the resulting relation is called a (statistical) state. The corresponding 
equivalence classes of registration procedures are called effects. When a few 
more elementary assumptions concerning statistical mixtures of states and 
effects are made, the following representation theorem holds: There is a 
base normed Banach space B with base K (its dual is an order unit space B' 
with unit 1 and order interval L = [0, 1]) such that the set of states may be 
identified with a subset K / C  K, the set of effects may be identified with a 
subset L! C L and the frequency function on K / X  L / wi t h  the canonical 
bilinear form {.,.): B • B'--, R. Under this pairing K/separates points of B' 
and L/separate s points of B. 

A theory is called classical, if B--~ Lt(fL Z, ~) for some measure space 
( fLZ ,~) ,  and quantum mechanical if B =  tq-h(~) (hermitian trace class 
operators) for some Hilbert space ~ .  

All subsequent axioms (including Axiom C) may now be formulated in 
terms of B, Kf, and L/ although they are usually justified in terms of 
preparing and measuring procedures (Gerstberger, 1980). 

We assume that included in the instructions for every procedure is 
some information as to where, when, and in what orientation and state of 
motion the equipment is to be set up. Changing only this part of the 
instructions according to a Poincar6 transformation defines a transforma- 
tion in the set of procedures naturally preserving equivalence classes. We 
assume that its lift to Kf and Lf extends by continuity and linearity to 
transformations of B and B' (Axiom CI). 

We assume that every laboratory procedure is to be performed in a 
finite space-time region. Finiteness in time means here that the apparatus, 
though it may have been built some time earlier, is active as a part of the 
experiment only for a finite time and then switched off. It is important to 
note that procedures in different, even disjoint, regions may still be equiva- 
lent statistically and thus belong to the same state. We define for every 
bounded open region o C R4L~J~(O ") C If/to be the set of states containing a 
preparing procedure that operates in o. The corresponding set of effects will 
be denoted by ~ (o). (Axioms C2, C3, C4). 

There is one especially simple preparation procedure that consists of 
setting up no apparatus at all. An experiment with this preparation is 
performed by only triggering the measuring device at the prescribed time 
and reading the result some time later. The corresponding state will be 
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called "vacuum" and denoted by W 0. Of course every experimental physi- 
cist knows that preparing "vacuum" is a good deal more complicated than 
described here and takes a lot of pumping and screening. However, this is 
also needed to perform any other state preparation. Otherwise one would 
not even get reproducible counting rates, making impossible the very 
definition of states. Thus the vacuum preparation should perhaps be de- 
scribed more precisely as "Do  all the screening necessary, but do not set up 
any additional preparing apparatus." With this description of vacuum 
Axiom C5 is a direct application of Einstein's principle of causality. 

The following notations for Minkowski space will be used in the 
sequel: e, is the set of open sets in R 4, ~! the set of bounded open sets. o x o' 
means that o and o' are (pointwise) spacelike, o' will denote the open 
spacelike complement: o " = U { o ' [ o ' ~ k o ' X o  }. A net {g/} in the re- 
stricted Poincar+ group @.. +T is said to go to spacelike infinity (g~ ~ soo) if for 
o~,ozE~ / there is i 0 such that g~o~ x 0 2 for i>~i o. We then have the 
following axiom. 

Axiom C. [Given: a base normed space (B, K)  and its dual order unit 
space (B', L).] 

6 1 (1) There is a o(B, B')-continuous representation ct of ,~+ by linear 
transformations of B such that Vg c,:~,,etg(K) C K. (The dual representation 
(~ is defined by { a.~ ,IV, F )  = : { W, ~ g F ) . ) 

(2) For every oE ~/there are sets ~ ' (o)  C K, ~(o)  C L such that 

(a) = U 
o~e t 

( b ) q : =  U 1~(o) 

separates points of B' and 

separates points of B. 

gE  J +" (a) age'(o) C%(go) ,  (b) ff .~(o) C ~(go). (3) For oE ~f and 6~ ~ ' 
(4) For o I C o2: (a) ~'(ol) C "~'(o 2) and (b) ~(ol) C ~(o2). 
(5) There is a state WoE K (called vacuum) such that o t •  2, 

WE "~(o~ ), r E  ~(o2) imply ~W, F )  = ~W 0, F ) .  
A pair (~T(, 1~), '3(: e / ~  ~)J~(K), ~: t~r ~ ':P(L) satisfying these assump- 

tions will be called a causal system. 

The space D: = lin( 1 } U E f  ii is called the set of quasilocal observables 
in analogy with Haag and Kastler (1964). With every o ~  (9 we associate the 
weakly closed subspaces ~ ( o ) :  = [{Wo} U U ( ' ~ ( 6 ) l o D r E  ~/}] •  and 
~(o): = [{1} U U {~(6)[oDaEtl/}]  •177 The following proposition sum- 



Causality. between Preparation and Registration Processes 785 

marizes some elementary consequences of Axiom C: 

Proposition 1. (1) W 0 is uniquely determined and Poincar6 invariant. 
with g, -~ s ~  (2) For S E  B, TE D, and any sequence g,,E ?P+ 

lim (agS,  T) = (S, 1)(W o, T )  
#1 ~ O 0  

(3) Let g be a spacelike translation 
(a) S E B ,  a . ,S--S  = S = ( S ,  1) .W o 

(b) r E  0_2 freT= V = r =  (W o, r ) .  1 
(4) (a) ("1 ~X(o<)=RWo (there are no states at infinity) 

oE ~?t _ 
(b) ("1 t~(o r = R. 1 (there are no effects at infinity). 

o e e  s 

, w For any Proof. (1) Let Wo, W~) be vacua satisfying C5 and gEt 'P+.  
F~r_ t, say F ~  ~(o),  pick o 'E  P/with o ' •  and WE <,~(o'). By C5 and C3 
with go ' •  we have ( W , F ) = ( W o ,  F ) = ( W o ,  F ) = ( % W ,  ff~F)= 
( W  o, ffgF) = (%W~, F ) .  Since t~f separates points: W 0 = W~ = % W  0. 

(2) This is trivial for lin <~f and lin t~/and extends to the norm-closures. 
(3) Special case of (2) since g" ~ soo. 
(4) For FEI~(o) and S~t'hi(o"): (S, F )  = ( S , I ) . ( W  o, F) by C5 and 

definition of ~'(o). (4a) then follows from C2b. (4b) is analogous. �9 
Axiom C only formulates the consequences of Einstein's causality for 

statistical measurements. In an individual experiment it is impossible in 
general to decide whether the positive response of the registration apparatus 
was "caused" by a microsystem or by the random "response" of the 
apparatus to vacuum. This distinction can be made only if the vacuum rate 
of the apparatus is zero. Of course an experimental physicist always tries to 
make the vacuum rate of his recording instruments as small as possible. If 
he does not succeed in making it zero he will subtract from every counting 
rate the previously measured vacuum rate. The obtained result will serve 
him as a fair approximation of the rate he would have measured with the 
detector he did not quite manage to build. The problem with this procedure 
is of course that it may lead to negative "rates." Therefore the reinterpreta- 
tion of rate differences in terms of a hypothetical apparatus is only possible 
for detectors represented by a particular kind of effects called "counters": 

Definition. F E L  is called a counter, if Vwe~(W,F)>~(Wo,  F ). 
L. will denote the set of counters. 
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For a counter F the hypothetical apparatus described above is repre- 
sented by F - { W  o, F ) I E L .  All measuring devices commonly found in 
practice may be considered at least as close approximations of counters or 
correlation arrangements of counters and inverted counters [ F ~< (W  o, F )  1 ]. 
We shall say that a causal system ( ~ ' , ~ )  "contains many counters" if 
~.fAL= still separates points of B. In contrast, it will be shown in Section 4 
that no system satisfying the spectral condition contains any local counters 
at all. 

We now formulate the postulate of local coexistence. In the framework 
of statistical theories the notion of coexistence of two effects describes the 
possibility of measuring the effects by the same apparatus: Suppose a 
measuring procedure with two binary displays is given which then leads to 
four different outcomes (denoted + + ,  + - , - + , - - ) .  One may define 
corresponding effects F++,  F + _ ,  etc. by the procedure of applying the 
original apparatus but interpreting only the outcome " +  + "  as a positive 
result. From this description it is clear that 

The e f fec t sF  I = F + + + F + _  a n d F  2 = F + +  + F  + then describe mea- 
surements in which the second (or, respectively, the first) digit of the display 
is ignored. Two arbitrary effects F I, F 2 are called coexistent if they admit a 
decomposition into effects F~ .... satisfying the equations above. Coexistence 
is only a necessary but not a sufficient condition for the existence of a 
device measuring both effects. It is, however, the strongest condition that 
may be formulated in {B, B') ,  i.e., in terms of statistical equivalence classes 
of procedures. The relation of coexistence to the more widely known 
commutativity properties is described in Proposition 2 below. 

The possibility of combining measuring devices in spacelike separated 
regions into a correlation experiment is now described by the following 
axiom. 

Axiom CX (local coexistence). Let o I •  F ~ , ( o , ) ,  i=1 ,2 .  Then 
there are effects F~,.~,E ~(OlUa2) ,  e I, e 2 = •  such that Fj = F+ + + F+ , 
F 2 = F + + + F  + , a n d E F t , ~  =1.  

' 2 

3. CONNECTIONS TO THE ALGEBRAIC APPROACH 

The ideas expressed in Axioms C and CX bear a strong resemblance to 
the algebraic approach to quantum field theory. Therefore it may be useful 
to point out the relationship between the two approaches in some more 
detail. 
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The first difference to be mentioned concerns the style of axiomatic 
treatment. Ludwig's general approach to axiomatic formulations (which we 
follow) places a strong emphasis on directly observable elements of reality 
as a starting point for axiomatic constructions. While this motive is clearly 
present in the approach of Haag and Kastler, it seems to be partially 
superseded by the tendency to introduce mathematical structures (in partic- 
ular algebraic structures, see below) which cannot be referred immediately 
to observations, but are rather justified by an appeal to traditions of theory 
construction and a desire to obtain strong mathematical consequences. Thus 
in the terminology of Ludwig the Haag-Kast ler  theory may be called an 
axiomatic theory which is not stated in the form of an "axiomatic basis." Of 
course this remark is not intended as a criticism of algebraic quantum field 
theory, since an appeal to accepted theories and the desire to obtain a rich 
mathematical theory are ingredients of any axiomatic approach. By attempt- 
ing to construct an axiomatic basis for relativistic quantum theories we 
merely try to clarify some physical implications independent of algebraic 
assumptions, thus presenting a new point of view on some properties also 
known in the algebraic approach. 

The problem of justifying the algebraic assumption also arises in 
axiomatic quantum mechanics. There, too, one may consider the postulate 
that the order unit space B' as constructed in Section 2 is isomorphic to the 
self-adjoint part of a C*-algebra (or a Jordan algebra). But is is a hard and 
as yet unsolved problem to derive this postulate from assumptions on the 
linear and order structure of B', which describes the statistics of macro- 
scopic measurements. [For attempts in this direction see Alfsen and Shultz 
(1978) and Araki (1980). In the axiomatic deduction of Hilbert space 
formalism (Ludwig, 1970, 1981) the status of algebraic assumptions is not 
apparent.] Sometimes a Jordan product is constructed via the assumption 
that a scale transformation on observables corresponds to a similar transfor- 
mation on the elements of B'. However, this postulate (first expressed by 
von Neumann) would imply that the operator describing the mean values 
over the scale uniquely determines the yes-no  effects corresponding to 
subsets of the scale (via the spectral resolution). But it can be demonstrated, 
e.g. Kraus (1974), that in typical measurement situations the yes-no effects 
of an observable are not even decision effects (i.e., projection operators in 
the Hilbert space model). Thus yon Neumann's postulate is not an accepta- 
ble starting point for the construction of statistical theories in an axiomatic 
basis. More promising seems to be the idea of relating the multiplication 
operation to the possibility of executing "operations" one "after"  the other. 
(An "operation" represents mathematically the measurement of an observa- 
ble together with the resulting changes in the state of the systems). This 
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approach seems to be favored by Haag and Kastler (1964) and Araki (1980), 
but the details have still to be worked out. 

One characteristic feature of the axiomatic approach presented in this 
paper is that states and effects are treated much more symmetrically, i.e., 
the physically relevant states are also assumed to be given, just as the net of 
local observable algebras is assumed to be given in the algebraic approach. 
On the one hand this enables us to formulate as an axiom the impossibility 
of transmitting signals faster than light. On the other hand the problem of 
choosing the proper set of states (or representations) is excluded, or rather 
assumed to be solved, and only a condition on this choice is formulated. 
Some of the consequences of Axiom C that may be surprising at first glance 
(e.g., the uniqueness of the vacuum) arise in this way. 

To make contact with the algebraic approach it is natural to identify 
the set of effects ff (o)  associated with a region o with the order unit interval 
of a local C*-algebra ~(o) ,  i.e., I~(o) = {F~  e~(o)[0 ~< F ~  < 1 }. The inclusion 
relation of C4. is then to be interpreted as an inclusion of algebras and the 
space D coincides with the C*-algebra of quasilocal observables. 

The following theorem shows that the local commutativity (locality) of 
the algebraic theory becomes equivalent to our axiom of local coexistence, 
i.e., Axiom CX is a proper generalization of locality. 

Proposition 2. Let 07 be a C*-algebra, L = [0, 1] C 0?. Let ~t~t and 0?2 be 
�9 of ~. Then Lnf f ,  (i = 1,2) are pairwise coexistent if and only 
if el ~ ~ and d? 2 commute. 

Proof. If F~, F2~ L commute they are coexistent since the required 
decomposition may be constructed in the function calculus. (F+ + = F~. F z). 

For the converse we may assume 0? C ~ ( ' 3 ( )  by choosing a faithful 
�9 - representa t ion  of ~. 

Let FtELfq0? I and F2ELfq0?2 ~'*. Then F I and F 2 are coexistent: For 
any sequence F t n ) ~  F 2 with F t ' ~  Lr we may choose a sequence of 
decompositions F~"~. ,.E L with Y.,.~2=~ F~,.~ 2~'~ -- 1, F I = -++r'l"l + -+-~'~"~ . FI,,~ = 
Ft,,i + ~-t,,) By the weak *compactness of L we may find convergent + +  ~ _ + .  

subsequences yielding a decomposition of F~, F 2. The same argument shows 
that Lnff~"" and LNff2"" are coexistent. By Kaplansky's density theorem 
LfqA, w" = L N A  i II. 

For projections coexistence implies commutativity. Hence 0?~ and 07_~, 
being generated by projections, commute. �9 

The meaning of Axiom C within the algebraic approach is not so easily 
established, since there is no natural counterpart of the local states ~ ( o )  in 
the axioms of that approach. The question should perhaps be posed in the 
following way: given a net of local algebras satisfying the Haag-Kast ler  
axioms, is there a vacuum state W 0 and a family {~(o)}~cc  ' in the dual of 
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~ = Uo~ert:~(a) satisfying Axiom C together with (~(o)}? Some sufficient 
conditions are relatively easy to give. For example if W 0 is faithful on every 
local algebra and satisfies certain cluster properties [to exclude observables 
at infinity (Bratteli and Robinson, 1979)] then a construction similar to 
Proposition 6 may be used to obtain sufficiently many local states. The 
space B of quasilocal states then coincides with the normal states in the 
vacuum representation. (Note that the local faithfulness of W 0 is equiv- 
alent to the nonexistence of local counters, which is related to the 
spectral condition by Proposition 4.) In this case the local states ~3~'(a) 
are constructed by "indirect localization" in the sense of Section 5. In 
general, however, it is not clear whether the dual B' of the space 
B=linUoeerK(a) I1110 of quasilocal states thus obtained from a given 

vacuum W 0 is again a C*-algebra (hence a W*-algebra). This would be 
desirable for the consistency of algebraic assumptions and amounts to the 
assertion that local operations in the sense of Haag and Kastler transform 
quasilocal into quasilocal states (although they do not, in general, transform 
local into local states). 

Note that this assumption does not refer to the whole net of local states 
~ ' ( a )  but only to the closed subspace of D' generated by these states. Thus 
it may be formulated in the same setting as Axiom C. In order to express 
Axiom C in the algebraic approach we shall therefore consider the following 
postulate. 

Postulate A. Let B and a be as in C 1 and I~ (a) C L for a E t~/. These 
objects are said to satisfy Postulate A, if B is the self-adjoint part of the 
predual of a W*-algebra 23~, t~(a)= {FE 0?(a)]0 ~< F<~I} for some *-sub- 
algebra O~(a) C ~-~ and l~ (a) satisfy all parts of Axiom C referring only to 
this family. 

Assuming this postulate, the meaning of Axioms C and CX for the 
algebraic approach is completely clarified by Propositions 6 and 2. 

It is clear that the stage of development of the theory presented in this 
paper leaves a lot to be desired compared to the level of sophistication that 
has been achieved in the algebraic approach. It seems to be very promising 
to study some of the physical ideas expressed in that approach in our 
setting, perhaps using analogous techniques. The importance of "physical 
equivalence" of causal systems may be mentioned. The concept of "opera- 
tions" also admits a natural transcription into our approach. Preparations 
may be conceived as particular operations applied to the vacuum. Since 
operations carried out in spacelike separated regions should not influence 
each other, this leads to an axiom about the possibility of preparing 
"product"  states by letting two preparing apparatuses operate in spacelike 
separated regions. This is a natural requirement for many-particle theories 
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and may imply properties like the additivity of the spectrum of translations. 
Studying asymptotic approximations between a "free" and an "interacting" 
causal system results in a formulation of scattering theory in which geomet- 
ric features play a prominent role. The authors hope to study at least some 
of these problems in subsequent papers. 

4. CAUSAL SYSTEMS AND SPECTRAL PROPERTIES OF 
THE TRANSLATIONS 

Throughout this chapter we assume a quantum mechanical description 
of the carriers of the interaction between the preparing and recording 
devices: 

Axiom Q. There is a countable set of pairwise orthogonal projection 
operators (P~}i~N with E/P, = 1 in a Hilbert space '% and 

K= { WE ~( .~  )IW>>-O,tr W= I, Vi[ W, ei] =0}  

L= {FE~3(~)IO<~ F<I,  Vi[ F, P,] =0}  

The bilinear form is given by ~W, F )  = tr(W.F).  The P~ are called super- 
selection projectors. 

As a consequence of Axiom C there is a unitary representation U (up to 
a multiplier) of ~ T+ in ~ such that 

ag(W)=UgWUg, f fg(r)=ugrUg, and Vi[Ug, Pi]=O 

In strengthening a result of Proposition 1 the vacuum WoE K turns out to 
be a pure state, i.e., there is a ~bo~ gs with W o = P~0. We have VsEo~, ' Ugq~ o = 
%. 

r and Pg for all i E N ,  Proof Since W 0 commutes with U s for all g E ~+  
this is also true for the spectral projections of W o. With Proposition 1.3.a we 
have W o = ?~P0 for a finite-dimensional projection P0- Since the restriction 
of the unitary representation of P T+ to Po ~ is trivial every one-dimensional 
projection P~o ~< Po commuting with all P/gives W 0 = P%. �9 

It may be mentioned that all the following results of this chapter 
remain valid if, instead of assuming Q, only a representation of the Banach 
spaces B, B' by trace class and bounded Hilbert space operators, respec- 
tively, is given such that the representation o f  the subgroup of space-time 
translations of ~ T ~+ is unitarily implemented. 
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The subgroup of space-time translations determines uniquely a projec- 
tion valued measure E on R 4 such that for all x E R 4 C o,~+T 

Ux = f e i(p' "~SdE( p ) 

We discuss the connection of the energy-momentum observable given by E 
with the causal structure (~f, ~). From Proposition 1.3.b it already follows 
that effects of the form F = f f (p)  dE(p) cannot represent real apparatuses 
such that F E  ~(o)  with o E 0 / .  The following proposition states a similar 
result. 

Proposition 3. Assume Axioms C and Q. Let x E ~4 be a spacelike 
translation and A the unbounded self-adjoint operator A = fe I< p' X)ldE(p). 

(1) If W E K / w i t h  tr(WA2)<oo,  then W = W  o. 
(2) If F E  if/with II AFA II < oo, then F = 0. 

Proof A-tU,~: = f e x p ( -  I (P ,  x) l+  it(p, x) )dE(p)  as a function of t 
is analytic in the strip I Im t I < 1. Hence for WE ~ .  satisfying the assump- 
tion of (1) and F E  I~ftr(WU,*FUex)= tr(AWA.A-~U_,xFA -I U,,.) is ana- 
lytic for I Im t [ < l  and equals tr(WoF) for sufficiently great t with Im t = 0. 
Thus t r (WF) = tr( W o F).  The proof of (2) is quite similar. �9 

(1) states that momentum distributions of states which can be prepared 
in finite space-time regions decrease slower than exponentially in spacelike 
directions. Likewise the sensitivity of recording devices in finite space-time 
regions decreases slower than exponentially for increasing momenta. 

The support of the projection valued measure E is characterized by the 
decomposition of the representation of P r+ into irreducible parts and the 
resulting mass distribution. As is already indicated by Proposition 3 there is 
a connection between the causal structure and the support of E. This is 
made more explicit in the following proposition. 

Proposition 4. Assume Axioms C and Q. Let F: = ( p E R 4 l P 0 ~ > l p ] }  
denote the closed forward light cone and 

H ~ = ( p E n 4 l ( p , p ) = p ~ - p Z < < - - e }  ( e > 0 )  

(1) F E  ~f, E ( F x ( 0 } ) F =  F imply F =  0. 
(2) FE ~f, E( H~)F = F imply F =  0. 

Proof In both cases we have (W 0, F )  = tr(WoE({O})F) = 0. If WC '~/, 
the function ~(x):  = tr(WU~*FUx) thus has support in a closed double cone 
with compact base. If W=Y.n~,,P~, , is the spectral representation, the 
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q,,,.+(x): = <q'l FI/ZU,-%,) = fe'<P'X><F'/%ldE(P)W,,) 

has support in the same double cone for all n E N, ~ ~ '3('. Moreover ,~,,. + is 
the Fourier transform of a complex valued measure on R4, the support of 
which is contained in F or H, according to the assumptions of (1) or (2), 
respectively. By the following two lemmas either assumption implies q~,,. + ---- 0 
hence q~(0)= t r ( W F ) =  0 and F = 0 since ~)separa tes  points. 

Lemma 1. If TE ~'(R") is a tempered distribution with support in 
a closed generating proper cone F, suppT~v ~ R" implies T =  0. 

This lemma is a corollary of the "edge of the wedge" theorem 
(Streater and Wightman, 1964; theorem 2.17). 

Lemma 2. Let T ~  S ' (R")  be a tempered distribution, 0 E R". Sup- 
pose that supp T lies outside an open cylinder Z with axis 
O(Z+RO C Z )  and suppT~N{x] [~x,O)l~<)t} is compact for all 
kt E R. Then T- -  0. 

Proof L e t f ~  S(R) with suppfcompact .  Let SIC 7~'(R") be defined by 
S/(cp): = fdtf(t)~p(O.t). The Fourier transform of S/is the function 

= / ( < x , 0 ) )  

Proof 
(Wo, F ) "  1. 

Hence S/ .7  ~ is well defined and has compact support. On the other hand 
supp(S/* T)  C supp S! + supp T = R 0 + supp T does not intersect the cylin- 
der Z. Since S/* T as the Fourier transform of S/. 7 ~ is an analytic function it 
must be 0. By letting suppfg row large one concludes T =  0. �9 

In quantum field theory one usually assumes the spectral condition. 
Spectral condition: The support of the projection valued measure E is 

contained in the closed forward light cone. 

Corollary. Assume C, Q and either the spectral condition or purely 
tachyonic spectrum of E (i.e., suppE C HEU (0}, e >  0). Then 

(I) ~ / n L :  C R .  1. 

(2) If o e  (9 l and F~e t~(o), 1, = 1,2 . . . . .  with {W o, F,,) --. 0 then 
W, F,) ~ 0 for all WE K. 

(1) If F E f / N L .  Proposition 4 may be applied to F ' =  F -  
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(2) The proof consists in the observation that the set of localized 
effects ~ (o)  can be assumed weakly closed and hence compact. �9 

The spectral condition does not contradict the introduction of causal 
systems ( K ,  ff ) as is shown by Example 6.3 (Section 6 below). However, in a 
causal theory with spectral condition all effects which can be recorded in 
finite regions of space-time are not counters but have nonvanishing vacuum 
probability rate which can be increased as well as decreased by ap- 
propriately prepared microsystems. 

Results related to Proposition 4 and its corollary may be found in 
(Hegerfeldt, 1974; 1980). The nonexistence of counters is a well-known 
phenomenon in quantum field theory. It is a consequence of the Reeh- 
Schlieder theorem, which is proved rather similarly to Proposition 4. The 
physical presuppositions of that theorem are, however, quite different in 
that it makes use of ideas related to local algebras of fields rather than 
Axiom C. 

It is an interesting question which spectra of E are compatible with 
Axiom C. For models containing counters the preceding corollary together 
with Examples 6.2 and 6.4 gives a fairly complete answer. Example 6.2 
demonstrates in particular that the assumption e > 0 for H~ in Proposition 4 
is essential. 

For classical theories the exclusion of spacelike momenta is a direct 
consequence of causality. By 6.2. this is no longer true for quantum 
mechanics. Here the exclusion of tachyonic representations is motivated 
only by appeal to quantum-classical analogy. Whether it is possible to 
exclude "proper"  tachyons (e > 0) by Axiom C alone is as yet unknown. 

Examples 6.3 and 6.5 show the compatibility of Axiom C with the 
spectral condition. In particular it is possible to construct causal systems for 
the irreducible representations of "P~,, + for m > 0 and the irreducible repre- 
sentations of the full Poincar6 group ~ for m = 0 and finite spin. 

5. CONSTRUCTIONS 

In many cases the families '~ and t~ may be enlarged by idealized 
elements without violation of Axiom C. For any family '~ or ~ and o ~  t~ ~ we 
define 

~ c ( o )  : = ( F E  LIVo,•162 F )  ---- ( W  o, F ) }  

U(o): = {we  KIVo,•162162 F) = ( W  o, F)  } 

[Equivalently: ~ c ( o )  = L r ) (R1  + K ( o " ) ' )  and ~"(o) = K M ( R W  o + 
~ ( o " ) "  ).] ~ " ( o )  is called the set of effects indirectly localized in o by ~.3~. 
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The following statements are easily verified: If ( K ,  ~) form a causal 
~< c and (K ,  Kc),  (~" ,~) , (Kcc ,  K c) etc. again system, then K ~ E  , E~<K c 

satisfy Axiom C. (Here K~<E " iff K ( o ) c E c ( o )  for all oE0 / . )  For any 
family K or C: K "cc = ~3~ c, E~c~ = ~c. If causal systems on the same Banach 
space B are ordered by set inclusion in both families K and E the maximal 
systems are just those of the form ( K  ~c, Kc).  Since K 'c may differ from 17. c, 
a causal system is not in general contained in a unique maximal system. 
Maximal systems always have the diamond property: 

K(a)=K(o<>), ~(o)=~(a <>) (witha <> =a"") 

Indirect localization suggests a construction of causal systems which is 
primarily based on only one of the families K or E. Axiom C5 is then 
automatically satisfied for ~ c  (or Ec). Since indirect localization is a 
naturally covariant operation only the separation property of K i (or E}) has 
to be transcribed into a property of K (or ff ). 

The following two propositions are of this type. 

Proposit ion 5. Let B and ag be as in Axiom CI, WoE K invariant under 
ag. Let K be a family satisfying Axioms C2a, C3a, C4a. Then there is a 
family ~ satisfying Axiom C together with K if and only if 

N ~(ac) =RWo 
aEt~ / 

Proof. The "only if" part is Proposition 1.4a. By the preceding remark 
it is sufficient to calculate 

( (%}) •  U %~C(o) = N (LN(RI+K(oc) •  

= N ( R l - I - ~ ( o c ) • 1 7 7 1 7 7  N ~ ( o " )  l i  
(*) oE~ / oce  / 

=linRWo=(O} �9 

For the equality ( , )  one has to use that in an order unit space every 
subspace containing 1 is already positively generated. The corresponding 
statement for the base normed space B and W 0 is false as is the dual of 
Proposition 5. A counterexample is given in 6.6. 

Under the additional assumption of Postulate A the dual proposition is 
true (independently of local commutativity): 
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Proposition 6. Let B, c~, ~ satisfy Postulate A. Let W 0 be an a-invariant 
state. Then a family ~ satisfying Axiom C together with ~ exists if and only 
if 

N ~(o") =~1 

Proof. Again one direction is Proposition 1.4.b and it suffices to prove 
that s separates points of B'. 

Let ~r: _~IL-- ,~(~)  be a faithful W*-representation in which the 
vacuum W o is represented by a density matrix W o. Then,_for o E (9/and any 
unitary operator UE~r(f.(o"))' the state Wu: A~tr(WoU*rr(A)U) is in 
~"(o). Thus it suffices to prove that the states UWoU* with U~o~: = 
U,~e/Tr(~(o"))' and U unitary separate points of ~('3s 

The set ~ as the union of an increasing net of *-algebras is a 
.-algebra. To show that it is weakly dense in ~ ( ~ )  it suffices to calculate 
o9,. Using that for o E  (9 ~c(O): = ~ ( o ) +  i~(o) is a W*-subalgebra of %-~. by 
C4b and A, we have 

N N N 
oce/ o~e/ .~e/ 

Suppose now that AE  ~ ( ~ )  and tr(UWoU*A ) = 0 for all unitary operators 
in ~ Then the same is true for all unitaries in |  ~ ( ~ ) :  For B r . .B,,E ~9 
self-adjoint: U = e ~B e ~s. E | By taking derivatives: 

tr(W0[B,, [ B 2 . . . .  [B, ,  A ] . . . ] ] )  = 0 

In this formula we may take weak limits on Bt. . .  B,,, i.e., the formula is valid 
for B r . .B ,E  ~ " .  Hence tr(WoeiBAe -is) = 0 for all B = B* ~  6~(~).  

For d i m ~ - =  ~ ,  W 0 has two different eigenvalues, say ~l, ~z with 
eigenvectors ~0~, cp 2. Now let ~kt, I/'2 be arbitrary unit vectors. There exists two 
unitary operators U l, U 2 with U1% = q#, U2q~ I = ~2, U2q~2 = ~h, and Ul~o 
=U2~o for rp• z. By subtracting the equations tr(U, Wo~*A)= 0 one 
obtains (h I -~2)((~pl ,  A~kl)--(~kz, A~k2)) = 0. Therefore A is a multiple of 
unity, which has to be zero. �9 

A typical property of causal systems with many counters is that ~ ( o )  
may be chosen to be an exposed face of K. The assumption that B be the 
predual of an algebra is introduced into the following proposition mainly to 
have a convenient description of faces of K. 
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Proposition 7. Let (B, a, K,  E) satisfy Axiom C. Suppose that B is the 
predual of a W*-algebra and that E contains many counters: (ff/OL:)• = 
(0). 

Then there is a family {Q(o)}oee of projections in L such that 
(1) agQ(o)=Q(go), (Wo, Q(o))=O, Q(o)=V{Q(#)Io~ 
(2) A Q(o ~)=0; 

o~e t 
(3) 1 - Q ( R  4) = :Q0 is a minimal projection with (W 0, Q0) = I; 
(4) Vw~.~,o)(W, Q(o~)) = O. 

Conversely, if a family (Q(o)) satisfies I . . .3 ,  a causal system with many 
counters is given by 

~ Q ( o ) :  = (WEKI~W,Q(oC))=O} 

EQ(o): = ( F E  L I [ 1 - Q ( o ) ] F [ I - Q ( o ) ]  = [ 1 - Q ( o ) ] ( W  0' F ) )  

Proof Let t~,(o) = ( F - ( W  o, F). liFe t~(o)nL=), Q(o) = suppUsc o 
t~:(#). Then K O = f f ~ > ~ ,  ~O=E~c>~ff. and properties 2 and 3 are 
straightforward reformulations of the separation properties of ~'/Q and ~Q. 

Construction and properties of Q(o) suggest an interpretation in terms 
of "propositions" or "questions" (Jauch, 1968). Q(o) may then be para- 
phrased as "(Some part of) the system passes through •." Condition 2 may 
be read as " N o  system is infinitely extended" (i.e., no system always affects 
the spacelike complement of any finite region); and condition 3 means "A 
system affecting no region in space-time is the vacuum." If in addition 
Q(o)AQ(o')=O one might speak of a true point-particle. In this case 
conditions 2 and 3 are equivalent. Proposition 5 shows that the spectral 
condition and conditions 1 and 2 are already inconsistent. 

Examples of causal systems with many counters are given in 6.1, 6.2, 
and 6.4. 

In the quantum mechanical case Proposition 7 characterizes causal 
systems for which K ( o )  is generated by the pure states P,  for ~ in some 
linear submanifold of ~ .  If "linear" is weakened here to "real-linear" it 
becomes possible to describe causal systems satisfying the spectral condi- 
tion. Real subspaces have proved to be a convenient tool in the construction 
of free fields (Araki, 1964). The same properties used there also allow the 
construction of causal systems. For any subset M C ~ we define states and 
effects over M as 

K(M) = conv(lcp)(cpl I IlcP II = 1, ~ E  M)  

L( M ) = c o n v t n  {M + i#( I,p)(4'l- Iq,)(q01) Ix, ~ ~ R; ,p, M} 
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M': = {+E ~ l ' q~e  MIm(+lCp) = 0} is called the symplectic complement 
of M. 

The following lemma summarizes the properties of these objects needed 
in the sequel. 

Lemma. Let M, N C ~';  M C N'. 

(1) Vw,,W2eK~M I VFeL(N) (W,, F> = ( W  2, F> 
(2) FIE L( M), F2E L( N)  = F I and F 2 are coexistent. 
(3) If M is a real linear subspace, the following are equivalent: 

(a) K ( M )  separates points of ~(0C). 
(b) L ( M )  separates points of ~(0(-). 
(c) dim n M ' ~  < 1. 

Proof (1) is trivial. 
(2) It suffices to consider the extreme points of L ( M )  [respectively, 

L(N)] .  These may be written as F = M + [ q J + > < + + ] - [ + - > ( + - [  with 
~ , = l l + - l l 2 , 1 - ~ = l [ + + l l 2 , ( q J + , + - ) = 0 ,  and ++ + + - , i ( +  + - + - ) ~  
lin R M (respectively, E lin R N). If +~+, +~ are the corresponding eigenvec- 
tors of F~ and F 2 the condition M C N' may be expressed by 

We now have to construct a G=F++E~ ) such that O<~G<-F t" 
G ~ F z ; F t + F z < ~ I + G .  Setting G=FIF2=FzFI  on {~br • we may 
assume :k = lin e {q~ ~, +2-+ }. Using a continuity argument if necessary + ~, +~ 
may be assumed to be linearly independent. 

If 0 ~< G ~< F~ and Fl+ i- = 0: G+~- = 0 and by analogous arguments: 
G+~ = O, G~,-~ = F2+~-,G+; = F,+;. These equations uniquely determine 
an operator G. It suffices to prove that G/> 0 since the other inequalities 
follow by symmetry ( F  k ~1 - F k) and uniqueness of G. Self-adjointness of G 
follows from the relations for (+l  +, +2 ). Positivity of the eigenvalues may 
be seen from the characteristic polynomial of G calculated in the basis 
(+?,+;}. 

(3) a = c :  For + t , + 2 e M ' :  1+1)(+2[--1+2)(+11=0. Hence + l = 0  or 
+2 = 7~+~ with X~ R. 

b = c :  By (1), K(M')  consists of at most one element, i.e., d i m c M '  
~<1. If t p E M '  and iepEM': ~pEM -c such that [cp)(+[ with 
+ J_ cp is not distinsuished from 0 by L(M) .  Hence ~p = 0. 

c = a :  Since K ( M )  C K ( M )  ~ we may assume M =  M"  to be a 
real closed subspace. If dim M'  = 0, M"  = "3C. If M'  = 
R+0, K ( M  ) still contains all one-dimensional projections 
since K( M)  = K( e ' M )  = K(~)V, ,eR.  

c = b: analogous. 
The proof of the following proposition is then straightforward. 
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Proposition 8. Let ~ be a Hilbert space, U: o~T+ ~ o-~L(gC) a unitary 
representation with invariant vector ~o- Let {M(o)}oc 0 be a family of real 
linear subspaces of '3C such that 

(l) UgM(o)= M(go); q,o ~ M(o); M(o) = U { M ( ~ ) l o ~ # ~  0s} 
(2) n M ( o ) ' =  n M(o~)"--R~b0 

oee  l oe~ s 
Then K(o) :  = K ( M ( o ) )  and f~(o): = L(M(o~) ') satisfy Axiom C. If in 
addition M(o~')CM(o) ' or M(o~)CiM(o) ' the smaller family ~(o): : 
L(M(o)) still satisfies Axiom C. Moreover o I • o 2, F~E ~(o~) imply that 
Fj, F 2 are coexistent. In this case one of the conditons (2) is redundant. 

In typical cases (6.5) ~ fails to satisfy CX and the weak closure of t~(o) 
contains neither projections nor counters. 

6. EXAMPLES 

6.1. The Classical Free Particle. Let f~o be the set of timelike straight 
lines in Minkowski space. For gE  ~:-~ T+ let Tg be the transformation of ~2 o 
induced by the action of g on Minkowski space. From its identification with 

6 1 a homogeneous space of ,7+,flo inherits a natural Boolean o-algebra E of 
subsets and a Tg-invariant measure ~. Let f~ be the measure space obtained 
from f~0 by adjoining a Tg-invariant point o~ 0 with/~({O~o}) = 1. For o ~  f let 
[2(0) be the set of lines intersecting o. Thus f~(a)n f l ( o ' ) = 0 .  

By Proposition 7 the following objects constitute a causal system: 
B: = Ll(f~, Y., ~), ( O t g p ) ( w ) :  ~--- [(Tg_lto), Wo(w ) = ~,o.,,,o, Q(o) = char- 
acteristic function of ~2(o). 

Explicitly: 

K( o) = (pE L~lp>~o, f pdF = l,suppp C~2(o )U {o~o} } 

E(o)  = { f E L  ~10~<f~<l, f(r = f(oa0) a.e. for r ~ 2 ( a ) }  

The same pattern of construction via (fL Tg, ~2(o)) may be used to define a 
large class of classical causal systems, including, e.g., free electrodynamic 
fields that may be generated by current distributions in a finite space-time 
region. 

Clearly, all of these models satisfy Axioms A and CX and contain 
many counters. 

6.2. A Quantum Mechanical Model Containing Many Counters and 
Tachyons. Using the same notations as in 6.1, let ~=t~2(f~,Y,/~),  
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(Ugd/)(w)=~/(Tg ,to), and Q(o) the multiplication operator by the char- 
acteristic function of ~2(o). 

Again Proposition 7 defines a causal system. The spectrum of transla- 
tions in this "Koopmanized" version of 6.1 may be calculated explicitly 
(Doplicher et al., 1968). Apart from a nondegenerate eigenvalue at 0, it is 
the complement of the open forward and backward light cones, absolutely 
continuous with respect to Lebesgue measure and of infinite multiplicity. 

6.3. Algebras of Observables Generated by I.~cal Algebras of Fields. 
Proposition 6 provides a criterion for the existence of causal systems for 
local algebras of observables. If the algebra of observables is generated by 
local algebras of fields ~(a)  the condition of Proposition 6 may be implied 
by conditions on ~(o). In (Doplicher et al., 1969) the connection between 
local algebras of observables and local algebras of fields is studied and the 
following result is observed, which appears here as a corollary of Proposi- 
tion 6. 

Corollary. In addition to the assumptions 
!~  --, ~ ( ~ )  be a faithful representation of 

of Proposition 6 let rr: 
I~  such that 

~r(~(o<))C~ and ( U ~T(o))'=C1 
oe~) 

Then a family K satisfying Axiom C together with l~ exists. 

The assumptions of this corollary are fulfilled in the cases of free Bose 
and Fermi fields. 

6.4. The following model is based on an irreducible representation of 
the full Poincar~ group in which time reflection is also represented by a 
unitary operator. It contains many counters. 

Let D be an irreducible representation of SL(2,C) in H, of class (s,0) 
(s integer or half-integer), such that in 5 - -S(R 4)| a natural representa- 
tion of ,,pT+ is given. For f, gE S let 

( f ,g)=(f ,g)+ +(f ,g)-  

<, ,>. =s(:, ,> 
dr+ --n(-+ po)8(p 2 - ma)d4p and P = poOo + P ' a .  

By this nonseparating inner product a Hilbert space H) with the 
canonical mapping a: S --* H) may be constructed. The representation U of 
0~) induced by a on H) is unitary. We have HI=H)+(DH ~ such that 
" "  4= 
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( f ,  g ) =  ( f ,  g ) ~  on H~_+. Let P• be the corre~sponding projection_s. The 
representation of ~T+ is irreducible in H I _+. By ( F f ) ( p )  = D(f/moz)i(- p) 
for f E  S, f = PoOo - p. ~r an antilinear involution F can be defined on H~ 
with the properties 

(i) UgF = rug for all g E  ~P~ 
(ii) P + F = F P  ; 

(iii) (Ff ,  Fg) = ( f ,  g) 
(iv) ( f , (P+-D(-I)P_)Ff ')=O iffEo~(o),f'~o~)(o')witho• 

o', t'•(o) = { r E  $, s u p p f  C o}. 
We now define H = C % @ H ~  as the Hilbert space of the quantum 

system. Let Q(o) be the projection onto the closure of ~t3(o<)) in H. We 
have UgQ(o)u~--Q(go) and V,e e Q(o)=l-Qo. If A = ( P + - D ( - 1 )  

�9 7 
P )F, property (iii) of F implies AQ(o")A t + Q ( o ) ~ < l - Q o .  Hence 
A oee~Q(o")= 0 and (Q(o)}oee~ defines a causal system via Proposition 7. 

This construction works for any spin s. The treatment of the vacuum 
given in Proposition 7 may also be modified to make the projection Qo a 
superselection projector. 

6.5. Example 6.4 can also be used to define a causal system for an 
irreducible representation of c:J~ t+ with m > 0, Po > 0 and spin s. (Thus the 
spectral condition will be satisfied.) Such an irreducible representation is 
given in the subspace H I + of H I. Let H+ = CqJo@H I + and define 

M(o)=aq~o~(P+flfEH I with Q(o)f=f '  and F f = f }  

r i n H +  With(ii)  it By (i) M(o)  is covariant under the representation of :'~'+ 
can be shown that U,,ze, M(o)@iRq.,o=H+. From (iii) and (iv) easily 
follows M ( o ' )  C M(o)' for integer spin and M(o") C( iM(o) ) '  for half- 
integer spin. Hence by Proposition 8 K(M(o)) and L(M(o)) satisfy 
Axiom C. 

For the construction of causal systems for a free photon we consider an 
irreducible representation of the full Poincar~ group with mass m = 0 in 
','J(." = C ~bo~ [ L 2 ( R  4, kt 0 ) | C 2 ], where/~ o is the Poincar6-invariant measure on 
the forward light cone. Similarly to the case m > 0 real linear subspaces 
M(o) with M(o")C M(o)' can be defined such that the assumptions of 
Proposition 8 are fulfilled. 

Taking direct integrals one may now construct causal systems for all 
representations with timelike spectrum. 

6.6. The techniques of Proposition 8 also yield a counterexample to the 
dual of Proposition 5: Let the family {M(o)}oc e be as in 6.5. Set ~(o):  = 
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L(M(o)). Then ~/= Uo~sL(M(o)) separates points of ~('3() since it even 
separates %-~C~. ") by Proposition 8. Covariance is trivial. To see that if 
contains no effects at infinity, let 

~'k~ (o)  = lin{i( [ cp)(~b ] -  I ~>(q01 )1~, m(oc) '} 

Then t'~'(o")C~(o) • and Uoeel~' (o)  is dense in ~S(tk'), hence 

n 

= ( , , ? ~ ) ( l •  • 1 7 7 1 7 7  

[t~(o)  plays the same role as ~ ' (o )  in Proposition 1, only that it is not in 
general positively generated.] The sets if (o) contain counters like, e.g., the 
projections P~o onto q0~ M(o)  with q0-L ~b o. Since Ue satisfies the spectral 
condition, this contradicts Proposition 4. 
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